首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   9篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   2篇
  1968年   3篇
  1966年   3篇
  1965年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
101.
Preliminary attempts to make retrospective studies of N balances and water stress in forest fertilization experiments by analyzing changes in the abundances of 15N and 13C, respectively, are discussed. Most evidence is from the Swedish Forest Optimum Nutrition Experiments, which have been running for two decades. Annual additions of N have been given either alone or in combination with other elements, notably P and K, every third year. Processes leading to loss of N, e.g. volatilization of ammonia, nitrification followed by leaching or denitrification, and denitrification alone, discriminate against the heavy isotope 15N. A correlation was found between fractional losses of added N and the change in 15N () during 19 years in current needles in a Scots pine forest, irrespective of source of N. Isotope effects were larger on urea than on ammonium nitrate plots (2 as compared to 9 15N ()) because of ammonia volatilization and higher rates of nitrification. They developed gradually over time, which opens possibilities to analyse the development of N saturation. However, the analysis may be confounded by shifts in 15N abundance of fertilizer N. In another trial, N isotope effects could be seen in both plants and soils 10 years after the last fertilization; they were smaller in soils because of a large pretreatment memory effect, but we expect them to persist there for decades.The enzyme RuBisCo discriminates strongly against the heavy isotope 13C during photosynthesis, but this effect becomes less expressed as stomata close because of water stress. The supply of N may also affect the 13C () via effects on rates of photosynthesis, and the source of N may have an influence directly via non-RubisCo carboxylations, and indirectly via effects on water use efficiency. In a trial with Norway spruce, the effect of N fertilization on the 13C () of current needles was strongly correlated with production and weakly so with foliar biomass a dry year, but not a wet year. This suggested that these variations are primarily related to induced differences in the balance between supply and demand for water. Hence, studies of {au13}C abundance can disentangle the role of water as such from its effects on mineralization of N and flow of N.  相似文献   
102.
Torgny Näsholm 《Oecologia》1994,99(3-4):290-296
The concentrations of arginine, protein and total nitrogen (N) and the abundance of15N were measured in 3-and 4-year-old needles of Scots pine trees fertilized with either 0 (C), 36 (N1) or 73 (N2) kg N ha-1 year-1 annually for 22 years (average doses of N). Remaining green needles and needles that were shed were compared and removal of N from total, protein and arginine pools was calculated. Earlier investigations had shown that high arginine concentrations are found in needles of trees that have an excessive N supply (Näsholm and Ericsson 1990). This study aimed to elucidate the fate of the accumulated arginine during needle senescence. It was speculated that a low removal of arginine during senescence would implicate that the primary function of arginine is in N detoxification and not in N storage. Moreover, litter quality would be altered if needles are shed with high concentrations of arginine and this might affect the turnover of N in forest ecosystems. In remaining green needles, the concentration of total N increased with increasing N supply. Protein N concentrations were higher in fertilized trees, but did not differ between the two N treatments. Arginine N was low in C and N1 trees but high in N2 trees. Senescent needles from C and N1 trees had about equal total N concentrations while in N2 trees this concentration was significantly higher. Protein N in senescent needles did not differ between treatments. Arginine N, however, was less than 0.1 mg g–1 dw in C and N1 trees but was higher than 1.5 mg g–1 dw in N2 trees. Removal of N was highest in N1 trees followed by C trees while N2 trees removed least N from senescing needles. The high concentration of total N in senescent needles from N2 trees was to a great extent explained by a high arginine concentration.The 15N value of remaining, green needles was higher (less negative) in N2 trees than in C and N1 trees. The same pattern was found for senescent needles. Comparisons of 15N values between remaining, green and senescent needles within each treatment showed a significant increase in 15N for all treatments during senescence possibly indicating losses of N as NH3 (g) from needles during senescence. It is concluded that arginine, accumulated in response to high N supply, is retranslocated only to a small extent during needle senescence. The ecological and physiological implications of this finding are discussed.  相似文献   
103.
Human intestinal alkaline phosphatase was immunohistochemically identified and localized in the pancreas, liver and kidney by use of a monoclonal antibody specific for intestinal alkaline phosphatase isozyme and by amplified biotin-streptavidin staining. In all the examined organs, the intestinal isozyme was found to be localized in the epithelial cells of ducts: bile ducts in the liver, distal convoluted tubules and collecting tubules in the kidney and ducts in the secretory epithelium in the pancreas. In the liver the antibody also stained some sinus-lining cells. In all the examined organs the endothelial cells of the capillaries and some vessels were stained. By use of immunoelectron microscopy, intestinal alkaline phosphatase was, as expected, found to be localized to the microvillar region of the small intestine. The isozyme was abundantly expressed in the apical area of the microvilli and in membrane remnants in the fuzzy coat. Capillaries and vessels in the submucosa were also stained, as well as small vesicles in the endothelial cells. The present investigation demonstrates the expression and localization of the intestinal alkaline phosphatase in several organs, though previously believed to be expressed only in the intestine.  相似文献   
104.
This report attempts to establish guide-lines for electrofishing in population studies and is the result of literature studies and experience from electrofishing in Denmark, Finland, Norway and Sweden. Equipment, safety and training, sampling design and precision requirements for various types of investigations, population estimation and fishing practice are discussed. The results are put forward in the form of recommendations. Special attention is paid to the sampling design of surveys in streams of different types and for different purposes. Examples of the computation procedures are also included.  相似文献   
105.
Inhibition of nitrogenase (EC 1.18.6.1) activity by O2 has been suggested to be an early response to disturbance in carbon supply to root nodules in the Frankia‐Alnus incana symbiosis. Intact nodulated root systems of plants kept in prolonged darkness of 22 h were used to test responses to O2 and short‐term N2 deprivation (1 h in Ar:O2). By using a Frankia lacking uptake hydrogenase it was possible to follow nitrogenase activity over time as H2 evolution in a gas exchange system. Respiration was simultaneously recorded as CO2 evolution. Dark‐treated plants had lower initial nitrogenase activity in N2:O2 (68% of controls), which declined further during a 1‐h period in the assay system in N2:O2 at 21 and 17% O2, but not at 13% O2. When dark‐treated plants were deprived of N2 at 21 and 17% O2 nitrogenase activity declined rapidly to 61 and 74%, respectively, after 20 min, compared with control plants continuously kept in their normal light regime. In contrast, there was no decline in dark‐treated plants at 13% O2, and only a smaller and temporary decline in control plants at 21% O2. When dark‐treated plants were kept at 21% O2 during 45 min prior to N2 deprivation at 17% O2 the decline was abolished. This supports the idea that the decline in nitrogenase activity observed in N2:O2 at 21% O2 and during N2 deprivation was caused by O2, which affected a sensitive nodule fraction. Nodule contents of the amino acids Gln and Cit decreased during N2 deprivation, suggesting decreased assimilation of NH4+. Contents of ATP and ADP in nodules were not affected by short‐term N2 deprivation. ATP/ADP ratios were about 5 indicating a highly aerobic metabolism in the root nodule. We conclude that nitrogenase activity of Alnus plants exposed to prolonged darkness becomes more sensitive to inactivation by O2. It seemed that dark‐treated plants could not adjust their nodule metabolism at higher perceived pO2 and during cessation of NH4+ production.  相似文献   
106.
Amino acid uptake: a widespread ability among boreal forest plants   总被引:10,自引:0,他引:10  
Amino acids constitute a potentially important source of nitrogen for plants in boreal forest ecosystems. Accordingly, it may be suggested that distinct plant species differing abilities to take up amino acids constitutes an important factor in determining plant ecosystem composition. Using GC-MS and isotopically labelled amino acids, we measured the simultaneous uptake of 15 different amino acids by 31 common boreal forest plant species. The results from this study show that all plant species tested, representing a wide variety of plant types, have the ability to take up amino acids from an incubation solution. Furthermore, uptake rates were unrelated to mycorrhizal associations as well as habitat soil amino acid concentrations and plant nitrogen availability dependence as measured by Ellenberg nitrogen indicator values. These results suggest that mycorrhiza is of minor importance for discrete plant amino acid uptake rates and further points out the potential importance of amino acids to plant nitrogen nutrition in boreal forest ecosystems.  相似文献   
107.
The I variant of placental alkaline phosphatase was purified to homogeneity by means of DEAE-cellulose chromatography, isoelectric focusing, and gel filtration on AcA-34. The specific activity of the I variant was found to be 3.33 kat/mg. The enzyme is a dimer with an isoelectric point of 4.6 and a molecular weight of 120,000 as determined by sodium dodecylsulfate electrophoresis. The amino acid composition and other physicochemical properties of the I variant were compared with those of the more common F and S variants. The low activity associated with the I variant is apparently not due to a low specific activity, but to decreased molecular stability. The behavior in the ultracentrifuge and other observations suggest that the I variant differs from the F and S variants in surface charge distribution.This investigation was supported by grants from the Swedish Medical Research Council (projects No. 4217 and No. 03X-2725) and from the Medical Faculty, University of Umeå.  相似文献   
108.
Characteristics of amino acid uptake in barley   总被引:2,自引:0,他引:2  
Plants have the ability to take up organic nitrogen (N) but this has not been thoroughly studied in agricultural plants. A critical question is whether agricultural plants can acquire amino acids in a soil ecosystem. The aim of this study was to characterize amino acid uptake capacity in barley (Hordeum vulgare L.) from a mixture of amino acids at concentrations relevant to field conditions. Amino acids in soil solution under barley were collected in microlysimeters. The recorded amino acid composition, 0–8.2 μM of l-Serine, l-Glutamic acid, Glycine, l-Arginine and l-Alanine, was then used as a template for uptake studies in hydroponically grown barley plants. Amino acid uptake during 2 h was studied at initial concentrations of 2–25 μM amino acids and recorded as amino acid disappearance from the incubation solution, analysed with HPLC. The uptake was verified in control experiments using several other techniques. Uptake of all five amino acids occurred at 2 μM and below. The concentration dependency of the uptake rate could be described by Michaelis–Menten kinetics. The affinity constant (K m) was in the range 19.6–33.2 μM. These K m values are comparable to reported values for soil micro-organisms.  相似文献   
109.
Although laboratory and observational studies suggest that many animals are capable of compensatory growth after periods of food shortage, few field experiments have demonstrated structural growth compensation in the wild. Here, we addressed the hypotheses that (i) food restriction can induce structural compensatory growth in free-living animals, (ii) that compensation is proportional to the level of body size retardation and (iii) that compensation induces mortality costs. To test these, wild brown trout (Salmo trutta) yearlings were brought to the lab, tagged individually, subjected to four levels of food deprivation (including a control), released back into the native stream and recaptured after one, five and ten months. Brown trout fully restored condition and partially restored mass within a month, whereas compensation in structure (i.e. body length) was not evident until after five months, supporting hypothesis 1. As the level of growth compensation was similar among the three deprived groups, hypothesis 2 was not supported. A final recapture after winter revealed delayed mortality, apparently induced by the compensatory response in the deprived groups, which is consistent with hypothesis 3. To our knowledge, this is the first field experiment demonstrating structural compensatory growth and associated costs in a wild animal population.  相似文献   
110.
Plants are sensitive to D-serine, but functional expression of the dsdA gene, encoding D-serine ammonia lyase, from Escherichia coli can alleviate this toxicity. Plants, in contrast to many other organisms, lack the common pathway for oxidative deamination of D-amino acids. This difference in metabolism has major consequences for plant responses to D-amino acids, since several D-amino acids are toxic to plants even at relatively low concentrations. Therefore, introducing an enzyme specific for a phytotoxic D-amino acid should generate a selectable characteristic that can be screened. Here we present the use of the dsdA gene as a selectable marker for transformation of Arabidopsis. D-serine ammonia lyase catalyses the deamination of D-serine into pyruvate, water and ammonium. dsdA transgenic seedlings can be clearly distinguished from wild type, having an unambiguous phenotype immediately following germination when selected on D-serine containing medium. The dsdA marker allows flexibility in application of the selective agent: it can be applied in sterile plates, in foliar sprays or in liquid culture. Selection with D-serine resistance was compared with selection based on kanamycin resistance, and was found to generate similar transformation frequencies but also to be more unambiguous, more rapid and more versatile with respect to the way the selective agent can be supplied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号